Extensions 1→N→G→Q→1 with N=C108 and Q=C22

Direct product G=N×Q with N=C108 and Q=C22
dρLabelID
C22×C108432C2^2xC108432,53

Semidirect products G=N:Q with N=C108 and Q=C22
extensionφ:Q→Aut NdρLabelID
C108⋊C22 = D4×D27φ: C22/C1C22 ⊆ Aut C1081084+C108:C2^2432,47
C1082C22 = C2×D108φ: C22/C2C2 ⊆ Aut C108216C108:2C2^2432,45
C1083C22 = C2×C4×D27φ: C22/C2C2 ⊆ Aut C108216C108:3C2^2432,44
C1084C22 = D4×C54φ: C22/C2C2 ⊆ Aut C108216C108:4C2^2432,54

Non-split extensions G=N.Q with N=C108 and Q=C22
extensionφ:Q→Aut NdρLabelID
C108.1C22 = D4.D27φ: C22/C1C22 ⊆ Aut C1082164-C108.1C2^2432,15
C108.2C22 = D4⋊D27φ: C22/C1C22 ⊆ Aut C1082164+C108.2C2^2432,16
C108.3C22 = C27⋊Q16φ: C22/C1C22 ⊆ Aut C1084324-C108.3C2^2432,17
C108.4C22 = Q82D27φ: C22/C1C22 ⊆ Aut C1082164+C108.4C2^2432,18
C108.5C22 = D42D27φ: C22/C1C22 ⊆ Aut C1082164-C108.5C2^2432,48
C108.6C22 = Q8×D27φ: C22/C1C22 ⊆ Aut C1082164-C108.6C2^2432,49
C108.7C22 = Q83D27φ: C22/C1C22 ⊆ Aut C1082164+C108.7C2^2432,50
C108.8C22 = Dic108φ: C22/C2C2 ⊆ Aut C1084322-C108.8C2^2432,4
C108.9C22 = C216⋊C2φ: C22/C2C2 ⊆ Aut C1082162C108.9C2^2432,7
C108.10C22 = D216φ: C22/C2C2 ⊆ Aut C1082162+C108.10C2^2432,8
C108.11C22 = C2×Dic54φ: C22/C2C2 ⊆ Aut C108432C108.11C2^2432,43
C108.12C22 = D1085C2φ: C22/C2C2 ⊆ Aut C1082162C108.12C2^2432,46
C108.13C22 = C8×D27φ: C22/C2C2 ⊆ Aut C1082162C108.13C2^2432,5
C108.14C22 = C8⋊D27φ: C22/C2C2 ⊆ Aut C1082162C108.14C2^2432,6
C108.15C22 = C2×C27⋊C8φ: C22/C2C2 ⊆ Aut C108432C108.15C2^2432,9
C108.16C22 = C4.Dic27φ: C22/C2C2 ⊆ Aut C1082162C108.16C2^2432,10
C108.17C22 = D8×C27φ: C22/C2C2 ⊆ Aut C1082162C108.17C2^2432,25
C108.18C22 = SD16×C27φ: C22/C2C2 ⊆ Aut C1082162C108.18C2^2432,26
C108.19C22 = Q16×C27φ: C22/C2C2 ⊆ Aut C1084322C108.19C2^2432,27
C108.20C22 = Q8×C54φ: C22/C2C2 ⊆ Aut C108432C108.20C2^2432,55
C108.21C22 = C4○D4×C27φ: C22/C2C2 ⊆ Aut C1082162C108.21C2^2432,56
C108.22C22 = M4(2)×C27central extension (φ=1)2162C108.22C2^2432,24

׿
×
𝔽